[image: image1.png]

LESSON 1

Lesson Objectives

· Learning the basic Syntax of PYTHON

· How to use Interpreted mode and Script mode.

· How to use the print statement

· How to Open and Save Python programs.
Success Criteria

· I can open PYTHON and produce a simple one-line program

· I can spot basic syntax errors in a Python program

· I can save a Python program and open it again.

Part 1
Using the interactive mode with Python

Before creating an artificial intelligence simulation, some Python fundamentals. Pupils will need to locate and open the Python IDE called 'IDLE' (trivia: named IDLE after Eric Idle). It might be appropriate to show the class what it looks like.
Explain that there is a tradition when learning a new programming language to first create a Hello

World program. Point out the location of Python’s command prompt, (the triple chevron >>>) and

identify it as such. Ask pupils to type in the following, exactly as it shown here and then press the

return key. Note that functions in Python are always in lower case.

>>> print("Hello World")
The phrase Hello World should appear immediately below the print as shown below

>>> print("Hello World")

Hello World

>>>

Part 2
Understanding what Syntax Errors are and how to avoid them

Now ask pupils to type the following in, exactly as it shown here and then to press the return key.

>>> print(Hello World)

The following error message will appear.

SyntaxError: invalid syntax

Computers are machines that are very literal when it comes to following instructions; humans are

rarely so literal. Computers are not as good dealing with nearly, almost, and not quite in the way

that we humans are. Syntax is used to describe the rules that determine the way that instructions and commands must be written. Python is reputed to be more forgiving of syntax errors than many other programming languages, which can make it easier to learn, meaning more time can be spent

creating than debugging. IDLE, the Python IDE, has syntax highlighting which automatically

assigns colours to different elements, e.g. the “Hello World” phrase should be green. This should

help spot some simple errors when typing in commands.

To gain a better grasp of syntax errors, ask pupils to first predict what will happen with some of the

following and then try them to see what if the response they get matches up with what they

predicted.

>>> print"Hello World"

>>> print("Hello World");

>>> Print("Hello World")

>>> print("Hel World")

>>> prin(Hello World)

Some will work and others won’t, ask pupils to also find out and try their own variations. Ask

pupils if they can identify a pattern to predict what variations work and which ones do not.
Guidance - One important point to highlight is that in the interactive mode, instructions are

executed straight away. It is perhaps worth pointing out as well that ‘print’ in programming usually

means on screen, not on paper.

Part 3

Create, save and test a 'Hello World' program

During this final part of the lesson, pupils will learn how to create, save and execute a “Hello

World” program using Python.

Once their program module has been saved, they can run it by either pressing the F5 key or going to the Run menu and selecting Run Module. If time allows, ask pupils to add more questions into their my_name program by copying the first lines of code, pasting them and changing the question text
TASKS

Move onto the three tasks shown on the PowerPoint. Ensure each pupil can Save the program and then run the program (F5)

LESSON 2
Lesson Objectives

· The need for variables in digital systems

· Differentiated data types ie. string data type and integer data types (Lesson 3)

· How to prompt the user for data and assign it to a variable.
Success Criteria

· I understand what a variable is

· I know how to assign data to a variable

· I can use the input() function to captures user’s keyed in data.

· I can output the contents of a variable with a string.

Begin by showing slide 2 to the pupils. Interactive Mode (SHELL) & Script Mode (we use it to write larger and more complex programs)

Slide 3: Invite them to write the following code in Script Mode (Ensure they Save it before they run it (F5))

print("Please type your name in")

my_name = input ()

Slide 4: Invite pupils to consider what’s going on. This is a perfect time to introduce variables.

 A core learning objective in this lesson is to understand the importance of variables.

A variable is a stored value, a string (or text string) is a sequence of characters which may be

words. This would be an ideal opportunity to identify to pupils what a string is and what a variable

is – perhaps ask them to search for definitions and develop their own explanation, or identify them

in their own program module. A string can be stored in a variable.
Slide 5: Reinforce specific principles of Assignment. Name = ‘Tim’. The assignment operator is the equals sign (=). Input() is a useful function that allows the computer to capture any data keyed in by a user.

Slide 6: Show pupils how a variable and a string (a bunch of letters) can be printed on the screen together! (i.e. by using a simple comma)

Slide 7: The program is getting a little more complex now, so allow pupils time to write in code and digest what it’s saying.

print("Please type your name in")

my_name = input ()

print("Nice to meet you ", my_name)

print("So, ", my_name ", what is your favourite food?")

favourite_food = input ()

print("Ah, your favourite food is " , favourite_food)

Pupils should run the program and test it!
Slide 8: Questions! Pupils should write down the answers on a page. Teacher – make sure you click the slide to start the 2 minute timer.

Answers:
1. my_name or favourite_food
2. 2 variables are used (shown above)

3. Equals sign =

4. my_name = input() or favourite_food = input()

5. Print should have print (Python is CaSe sensitive!)
Slide 9: Get pupils to complete this task which will consolidate their understanding of variables and assignment. You could them to complete this for HW if time runs out in lesson.
Lesson 3

Lesson Objectives

· Convey the mathematical operators needed for numerical calculations.

· Use Python to carry out simple mathematical tasks

· The importance of ‘commenting’ code and its implementation.
Success Criteria

· I know how to use the mathematical operators in Python

· I can use the Python interpreter to carry out mathematical calculations

· I know that number data types can be categorised e.g. Integer and Real numbers

· I can add comments to my program to help readers understand what’s happening.

Start lesson by opening PYTHON in INTERPRETER mode (not the SCRIPT mode they used last week). Interpreter mode is easy to spot because it uses Chevrons >>> to indicate that it’s awaiting user entry. It will then evaluate or execute the command straight away (unlike Script mode, which compiles all the command lines together)
Using the Python Interpreter as a calculator

Going back now to the imperative mode of the interpreter, we see that Python can function as a

calculator. Ask pupils to solve a series of maths problems using the interpreter, but do not reveal

how to do it straight away.

Activity – Ask pupils to find out how to use Python to work out the answers to these maths

Problems: 156 add 567, 132 subtract 46, 256 divided by 8, 389 multiplied by 13.
At this early stage, avoid explaining the keyboard symbols for mathematical operators to see if the class can work them out for themselves.

The method is shown below, but do not reveal it yet, instead ask the class if they can work it out.

>>> print(2 + 2)

The answers are:

>>> print(156 + 567)

723

>>> print(132 - 46)

86

>>> print(256 / 8)

32.0

>>> print(389 * 13)

5057

Please explain to the class that the mathematical operators in computing are add +, subtract – as they would expect, but multiply is * and divide is / .

In computing, whole numbers (without decimals) are referred to as integers, this means that while

4.0 is not considered an integer, 4 is. It is possible to store integers into variables.

A short activity to end the lesson could be to assign numbers to variables as in this example below.

>>> pizza = 250

>>> coke = 100

>>> chips = 150

Some interesting expressions can then be evaluated such as:

>>> pizza + chips

400

>>> 2 * pizza

500

Comment Your Code

This is now a good time to introduce the practice of commenting code to the class. Comments are often added to computer programs to allow people to understand the intentions of the person who created the code. The Python interpreter ignores the comments completely, so syntax is not a

problem. In practise, it is not necessary to comment every line/section – only where it is not obvious what is going on. However, as the class have probably not experienced commenting before, we will apply some comments to the simple code we have written so far using the hash key (#).

You will notice that when you use the hash key in the program editor, the text changes to red to indicate the use of commenting. Comments can be used for sections, or in-line as shown below.

This program finds out the user's name

print("Please type your name in") #prints message to user

my_name = input () #stores user’s name in a variable

print("Nice to meet you " + my_name) #displays message

Slide 5 : Questions – Ask pupils to add comments to all their lines of code. Some questions for pupils to

consider. Try using the think – pair – share approach with these questions.

1. How could you add some information about the program, creator, date etc.?

Answer- add a top line comment with name, date etc.

2. Is it necessary to comment on every single line?

Answer- Only comment when it is not clear to another person

3. If the interpreter ignores everything after the #, how else could this be useful?

Answer- You can use # to ‘comment out’ sections of code that are not working to help with

debugging.
Slide 6: Task – Pupils should comment their program entitled InteractiveProgram.
InteractiveProgram.py

print("Please type your name in")

my_name = input ()

print("Nice to meet you ", my_name)

print("So, ", my_name ", what is your favourite food?")

favourite_food = input ()

print("Ah, your favourite food is " , favourite_food)

Slide 7 – 9: Pupils will learn how pocket calculators use internal memory to store numbers in variables. Note: in its rawest form, a variable is simply a pointer to a memory location.

Slide 8: Pupils will create their own Calculator program. They should copy the code off the screen and save as Calculator.py
Slide 13 – 14: Plenary using 6 questions. Answers will appear on screen.
Lesson 4

Lesson Objectives

· The importance of control structures, specifically IF Statements

· How to evaluate expressions in Python using the the operators >, < and =

· To learn how to create a program that evaluates an expression and returns a different response depending on the result of the logical comparison.
Success Criteria

· I know how to use an IF Statement

· I know how to convert a number to integer format

· I know the difference between = and == in evaluating expressions.

Creating a maths quiz

There is a lot of value in creating games when learning how to program. This part of unit 9.04
starts with a simple question script that when understood can be used to build a more sophisticated game.

Start by asking pupils to open a new program editor window, we do this in the interpreter by

selecting File – New Window. Then ask them to create the script below, exactly as it appears.

Please pay particular attention to the use of spaces, indents and colons. Some programming

languages, Java for example make extensive use of { } brackets to mark blocks or phrases of code. Python uses indents instead to mark out separate blocks. So, it is crucial that the indents are used appropriately.

Slide 1: Ask pupils to save this as maths_question.py – if they all use the same name, it will make it easier in future lessons to retrieve their work.

print("What is 2 + 2?")

answer = input ()

answer = int(answer)

if answer == 4:

print("Well done")

else:

print("Sorry the answer was 4")

Some will complete this more quickly than others, so ask them to add more questions to their game while waiting.
Slide 2 – 6: It is important that pupils understand the concepts presented in these slides. Go through each slide carefully and give opportunities for pupils to share their understanding.
Slide 7: Task – this should be set in the class and perhaps finished for homework. The solution is:
print(‘Welcome to guess the number game’)

my_number = 7

user_guess = int(input(‘Please enter a number between 1 and 10’))

if user_guess == my_number:

print(‘Well done! You guessed correctly!’)

else:

print(‘Sorry! Better luck next time’)

Lesson 5
Lesson Objectives

· How to use Counter Variables (e.g. Score)
· How to embed counter variables in an IF statement

· How to customise and refine programs further with print statements.
Success Criteria

· I know how to introduce a variable that can keep a score (this is known as a Counter Variable)

· I can increment the ‘counter’ variable by 1 in the use of If statements.

· I can refine a program by using more sophisticated print statements.
Demonstrating use of variables to add score to their game

Slide 2: In the last lesson, pupils used the following script to create the foundation of a maths quiz.
print("What is 2 + 2?")

answer = input ()

answer = int(answer)

if answer == 4:

print("Well done")

else:

print("Sorry the answer was 4")

Slide 3: Pupils should aim to have 5 questions in their maths quiz. To save time they can simply copy & paste their code.

Slide 4-5: With just a few lines of extra code, it should be possible to maintain a score throughout a game and then give the user some feedback at the end. Ask the class to modify their script thus. Check that pupils understand the concept of score now equals itself plus one.

score = 0 #this defines variable score, and sets it as zero

print("What is 2 + 2?")

answer = input ()

answer = int(answer)

if answer == 4:

print("Well done")

score = score + 1 #this increases score by one

else:

print("Sorry the answer was 4")

Slide 6: In addition, pupils will need to add a facility to display the score at the end of the game (print score) allow them to decide how to do this, or identify it is missing. A simple solution to print the score at the end of the game would be to add this line to the bottom of their program, with no indent;

print(score)
Slide 7: However, a more sophisticated way to do this would be to add the following.

print("Your score was ", score)

Slide 8 : Task – pupils should take on the task which really consolidates all the knowledge covered over the last 5 weeks. Encourage pupils to refine their programs in their own way by always looking for improvements.
e.g.

Welcome to the Math Quiz [name_variable]

 What is 2 + 2

...

...
Lesson 6

Lesson Objectives

· Consolidation of IF statements and the practical use of sequencing IF statements to achieve a differentiated outcome.

· Revision and techniques covered throughout the last 6 weeks.

· Preparation for next week’s controlled assessment.
Success Criteria

· I can add multiple IF statements to achieve a differentiated outcome

· I can confidently assign data to variables anywhere in a program and output those variables when desired.

Slide 2: Re-open the Maths Quiz program and show slide to remind pupils. Invite pupils’ responses on how they could improve the program.

Slide 3: There are many ways we could improve the program. This is only one way, but at least makes the program a little more ‘personal’.

Rather than simply report the score that the user has achieved, it would seem more impressive to

give an appropriate feedback response based on how high or low the user score is at the end of the game.

Slide 4: It’s worth highlighting the placement of the [name] variable in the statement (and possibly the score variable too, for more able pupils)

Slide 5: The IF statement is just like that studied earlier, only this time there is no ELSE part. It would be right to use an ‘ELSE IF’ construct here, but that is beyond the level of this short 7 week course.

Read out the statements aloud so pupils are familiarised with the syntax of the IF statement. ALSO, remind them that == means ‘is equal to’. (If score is equal to 1, If score ==1)

Give pupils plenty of time (15-20 minutes) to edit/amend their programs and encourage creativity and refinement too!
Slide 6: The score of 0 has not been accounted for. Ask pupils to accommodate for this scenario.

Slide 7: Pupils will face a controlled assessment next lesson. They will be given 35 minutes to write a program in response to ‘scenario’ or ‘problem’ the teacher will give them. Encourage them to read over pages and reivse.

FINAL PLENARY: Use voting to find out how many pupils enjoyed the course!
Lesson 7
Controlled Assessment Day!

· please distribute a copy of the exam to every pupil

· ensure pupils save their programs as shown on first page

· you decide if pupils should print out programs or access their file over network

· exam should last 30 – 35 minutes.

· Use MARK SCHEME for assessing work.

Unit 9.05

Scheme of Work

7 week course

(assessment wk7)

